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This paper studies early universe cosmologies derived from a scalar–tensor action
containing cosmological constant terms and massless fields. The governing equa-
tions can be written as a dynamical system which contains no past or future
asymptotic equilibrium states~i.e., no sources nor sinks!. This leads to dynamics
with very interesting mathematical behavior such as the existence of heteroclinic
cycles. The corresponding cosmologies have novel characteristics, including cycli-
cal and bouncing behavior possibly indicating chaos. The connection between these
early universe cosmologies and those derived from the low-energy string effective
action is discussed. ©2000 American Institute of Physics.
@S0022-2488~00!00709-X#

I. INTRODUCTION

In this paper we consider the qualitative dynamics of a class of spatially flat, scalar–t
cosmological models derived from the action

S5E d4xA2g$e2F@R1~¹F!22 1
2 e2F~¹s!222L#2LM% ~1!

whereR is the Ricci curvature scalar of the space-time with metricgmn , g[detgmn , $L,LM% are
constants and$F,s% represent scalar fields. The dynamics of these cosmological models has
interesting mathematical properties. In particular, there are no asymptotically attracting eq
rium states in the phase space and this may lead to important physical consequences.

The form of action~1! can be partially motivated from string theory, which is the mo
promising candidate for a unified theory of the fundamental interactions.1,2 When LM vanishes,
Eq. ~1! represents the truncated effective four-dimensional action of the Neveu–Schwarz/N
Schwarz~NS–NS! sector of the theory.1 The scalar field,F, represents the dilaton field and th
axion field,s, is the Poincare´ dual of the antisymmetric two-form potential. The constant,L, may
be interpreted in terms of the central charge deficit of the string theory and can be negativ
evolution of the very early universe immediately below the string scale may have been deter
by an effective action of this form. The dynamics of the spatially flat and homogeneous cos
gies in the caseLM50 was presented in Ref. 3. One of the main purposes of the present w
to determine the effects of introducing a nontrivial cosmological constant,LM , that does not
couple directly to the dilaton field. Such a term represents a vacuum energy contribution
energy-momentum tensor. A discussion of the spatially flat and homogeneous cosmologies
caseL50 was presented in Ref. 4, and a partial analysis of the dynamics with a nonvan
axion field when bothL andLM are nonzero was investigated in Ref. 5.
62770022-2488/2000/41(9)/6277/7/$17.00 © 2000 American Institute of Physics
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II. ANALYSIS

We assume that the metric corresponds to the spatially flat, Friedmann–Robertson–W
~FRW! universe:ds252dt21e2a(t) dxi dxi . Substituting thisansatzinto the action~1! and inte-
grating over the spatial variables then yields the reduced action

S5E dt e3a$e2F@6ȧḞ26ȧ22Ḟ21 1
2 e2Fṡ222L#2LM%, ~2!

where a dot denotes differentiation with respect to cosmic time,t. The Friedmann constrain
derived from Eq.~2! is given by

3ȧ22ẇ212L1 1
2 ṡ2e2w16a1LMew13a50, ~3!

in terms of the shifted dilaton field,w[F23a.
A generalization to the spatially flat, Bianchi type I cosmology may also be considered.

effectively results in the introduction of two massless scalar fields into the reduced actio~2!.
These fields parametrize the shear of the models. Similar degrees of freedom also aris
considering the toroidal compactification of higher-dimensional theories. Although we do
consider these extra fields in this paper, their overall contribution to the dynamics can be mo
by introducing a single modulus field,ḃ2[( i ḃ i

2 , into the reduced action~2!,4 and their inclusion
could be important in the discussion of chaotic behavior.

A. Zero central charge deficit

We first consider the caseL50.4 We assume thatLM.0, and employ the generalized Fried
mann constraint equation~3! to eliminate the axion field from the system. The resulting fie
equations may then be simplified by introducing the new variables and time coordinate@we
assume thatc.0; the casec,0 is related to a time reversal of the system and the qualita
mathematical behavior is similar~although the physical interpretation is quite different!#:

x[
)a8

c
, z[

LM

c2 ,
d

dQ
[

1

c

d

du
[

1

c
e2(w13a)/2

d

dt
, ~4!

where a prime denotes differentiation with respect tou and c[w8. The Friedmann constrain
yields

12x22z>0, ~5!

from which it follows that the phase space is bounded with

0<$x2,z%<1. ~6!

The invariant set 12x22z50 corresponds to a trivial axion field.
The cosmological field equations for the isotropic FRW model can now be expressed in

of the plane system:

dx

dQ
5~x1) !@12x22z#1 1

2 z@x2)#, ~7!

dz

dQ
52z$@12x22z#2 1

2 ~12z2)x!%. ~8!

The equilibrium points of this system areL (2)
1 (x,z521,0), L (1)

1 (1,0) and S1

(21/3),16/27). The first two are saddles andS1 is a repelling focus. The functional form o
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these solutions was presented and discussed in Ref. 4 and the phase portrait is given in Fig
note that the exact solutions corresponding to all of the equilibrium points are self-similar co
logical models.6

We see from Fig. 1 that the orbits are future asymptotic to aheteroclinic cycle. This is
comprised of the two saddle equilibrium pointsL (2)

1 andL (1)
1 and the single~boundary! orbits in

the invariant setsz50 (LM50) and 12x22z50 (ṡ50) joining L (2)
1 and L (1)

1 . Hence, the
orbits exhibitcyclical behavior.4 For each cycle, an orbit is quasistationary in the neighborhoo
the saddle pointL (2)

1 . It then shadows the orbit in the invariant setz50 as it moves rapidly
towards the equilibrium pointL (1)

1 . It settles into another quasistationary phase close toL (1)
1 and

eventually moves quickly back toL (2)
1 shadowing the orbit in the invariant set 12x22z50. It is

important to emphasize that the orbits move progressively closer towards the two saddlesL (6)
1 ,

after the completion of each cycle. Thus, the motion isnot periodic and a given orbit spends mo
and more time in the neighborhood of these equilibrium points.

The physics behind the cyclical nature of these orbits is as follows. The sign of the variax
determines whether the universe is expanding or contracting. The value of this variable
through zero during each cycle. This behavior arises because the cosmological constant eff
resists the expansion of the universe, but the axion field has the opposite effect. Since the
density of the latter scales asṡ2}e26a, it is negligible when the spatial volume of the universe
large. Consequently, the cosmological constant forces the expanding universe to recollapse
ever, the axion field inevitably becomes dominant and reverses this collapse, causing the u
to enter into a new expanding phase. The process is then repeated and the interplay betw
two opposing trends results in a universe that undergoes a series of bounces.

B. Nonzero central charge deficit

We now consider the caseLÞ0. We again employ Eq.~3! to eliminate theṡ2 term from the
field equations, and make the following definitions:

x[
)ȧ

j
, y[

22L

j2 , z[
LMew13a

j2 , u[
ẇ

j
,

d

dt
[j

d

dT
. ~9!

FIG. 1. Phase portrait of the system~7!–~8!, corresponding to the isotropic FRW model withLM.0 andL50. We shall
adopt the convention that large black dots represent sources~i.e., repellers!, large gray-filled dots represent sinks~i.e.,
attractors!, and small black dots represent saddles. Note that in this phase space orbits are future asymptotic to a
clinic cycle.
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We assume thatL,0 (LM.0) and we definej25ẇ222L. The generalized Friedmann con
straint equation~3! now yields 0<x21z<1, so that all variables are bounded: 0<$x2,y,z,u2%
<1. From the definition ofj, y is given byu21y51. The resulting three-dimensional syste
therefore becomes

dx

dT
5)~12x22 3

2 z!1xu~12x22 1
2 z!, ~10!

du

dT
5~12u2!~x21 1

2 z!.0, ~11!

dz

dT
5z@u~122x22z!1)x#. ~12!

The invariant setsx21z51, z50, u251 define the boundary of the phase space and
important to note that the variableu is monotonically increasing. This ensures that there are n
closed or recurrent orbits in the phase space. The equilibrium points of the system are all s
S6 (x,u,z571/A27,61,16/27),L (6)

1 (61,1,0) andL (6)
2 (61,21,0). The pointsL (6)

1 represent
power-law cosmologies withẇ.0, where only the dilaton field is nontrivial, i.e., the axion fie
and cosmological constant terms are dynamically negligible. These solutions are termed d
vacuum solutions and have an analytical form given byea}t61/) and eF}t216). The points
L (6)

2 are the corresponding solutions whereẇ,0. The phase portrait is given in Fig. 2.
In this case there areno sinksandno sourcesin the full three-dimensional phase space. Sin

the variableu ~and henceẇ! is monotonically increasing, solutions generically asymptote in b
the past and future towards the invariant setsu561. These both include an heteroclinic cycle a
this implies that generically the solutions exhibit similar asymptotic behavior at both early an
times to that discussed above.~For example, to the future the orbits in the three-dimensional ph
space shadow the orbits in the two-dimensional invariant setL50.! The orbits interpolate be
tween the dilaton-vacuum solutions corresponding to the saddle pointsL (6)

2 in the past and the
dilaton-vacuum solutions corresponding to the saddle pointsL (6)

1 in the future. The effect on the
dynamics of the cosmological constant,LM , is significant at both early and late times. The poin

FIG. 2. Phase diagram of the system~10!–~12! for L,0 andLM.0, whereẇ.0 is assumed. See caption to Fig. 1. Gr
lines represent typical trajectories found within the two-dimensional invariant sets, dashed black lines are those tra
along the intersection of the invariant sets, and solid black lines are typical trajectories within the full three-dimen
phase space.
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S6 correspond to the equilibrium pointS1 in Fig. 1, but unlike in theL50 case in whichS1 is
a repelling focus, in the three-dimensional phase space they are saddles and hence they do
a primary role in the asymptotic behavior.

From a physical point of view, the cyclical behavior arises due to the complex inte
between the axion field and the cosmological constant terms. The universe continues to un
succession of bounces between expanding and contracting phases due to the axion fi
vacuum energyLM . However, the inclusion of the central charge deficit,L, causesẇ to ulti-
mately change sign. Thus, the asymptotic behavior in the future is related to a time reversa
asymptotic behavior in the past. We remark that the dilaton-vacuum solution,ea}t21/), corre-
sponding to the pointL (1)

1 is inflationary over the ranget,0, because the expansion is accel
ating. In this case, the accelaration is driven by the kinetic energy of the dilaton field.~For a recent
review of the cosmological significance of these solutions see, e.g., Ref. 7.!

Finally, we make some brief remarks on the caseL.0. We can definej[ẇ and consider the
subsetẇ>0. Introducing normalized variables as before yields a three dimensional, com
system of autonomous, ordinary differential equations. We have completed a full dynamical
sis of this system, but we only describe the main features here. There is a nonhyperbolic e
rium point,C1, which can be shown to be a~global! source, sincey is a monotonically decreasin
function. This point represents a static universe, where the dilaton field is evolving linearly
time and the axion field andLM are dynamically negligible. There are also two saddle poi
L (6)

1 , which represent dilaton-vacuum solutions; these are analogues of the saddles that
above. Again, there is also a saddleS1. We stress that there are no sinks in the phase sp
Therefore, trajectories generically asymptote into the past towardsC1, and then spiral away
towards the heteroclinic cycle in the invariant sety50 containing the saddle pointsL (2)

1 and
L (1)

1 . The phase space is depicted in Fig. 3.

III. DISCUSSION

The most important mathematical feature of the models we have considered is thecyclical
behavior that arises due to the existence of a heteroclinic cycle. This is of great physical s
cance, because it might be an indicator of possible chaotic behavior. The solutions inter

FIG. 3. Phase diagram of the system withL.0 andLM.0, whereẇ.0 is assumed. See captions to Figs. 1 and 2
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between different Kasner-like dilaton-vacuum, power-law models, undertaking cycles betwe
saddles in the three-dimensional phase space. This is similar to the dynamical behavior that
in spatially homogeneous Bianchi cosmological models.6,8 The question of chaos in anisotrop
Bianchi type IX string cosmologies has been considered.9 It was shown that since the axion an
dilaton fields behave collectively as a stiff perfect fluid, the system oscillates only a finite nu
of times. Consequently, there is no Mixmaster-type chaos in these models.8,10 This is to be
expected since it is known that the admission of stiff fluid matter causes chaos to ceas11 In
contrast to the anisotropic Bianchi type IX cosmologies, however, the models described
contain cosmological terms, e.g., an effective dilaton potential and a dynamically important
field. It is these intrinsically stringy effects that give rise to chaotic behavior and this chaos
different origin to the chaotic behavior that arises in general relativistic models. On the other
there may be some connection with models that contain Yang–Mills fields. It is known
chaotic oscillations occur for such fields12 and, moreover, it was shown in Ref. 11 that t
oscillations that are suppressed by a single massless scalar field can be restored by cou
electromagnetic field to a Brans–Dicke-type field. This model is related to a scalar field m
with an exponential potential13 and, consequently, is also related to string theory cosmolog
models.14

There are a number of outstanding issues that need to be addressed regarding the
existence of chaos in string cosmology. First, the chaotic behavior depends crucially o
dimensionality of space–time and on the product manifold structure of the extra dimension9 In
particular, superstring theories are formulated inD510 space–time dimensions, whileM theory,
with its low-energy supergravity limit, is an eleven-dimensional theory.15 Second, the low-energy
effective action is only valid in the perturbative regime of weak coupling and small curvatur
general, it may be necessary to study chaos within the context of a full nonperturbative for
tion of the theory, but at present such a formulation is unknown. Nevertheless, if chaotic be
occurs at the level of the effective action, it is to be expected that similar behavior should a
the nonperturbative regime. Finally, there is the question of what will happen if inhomogen
are introduced. Again, such effects will be most unlikely to lead to any suppression of ch
behavior and will perhaps make chaos even more predominant.9

There are other questions which are important in early universe cosmology in general,
string cosmology in particular. The questions of whether cosmological models can isotr
and/or inflate~and if they can inflate whether there is a graceful exit from inflation! are of great
importance.16 The techniques utilized in this paper can easily be adapted to study the po
isotropization in more general spatially homogeneous but anisoptropic string cosmological
els. Inflationary properties of simple string cosmologies have been discussed above. How
chaotic cosmological regime might either be an alternative to inflation or, perhaps more i
tantly, could work in tandem with an inflationary mechanism17 to produce new interesting physica
phenomena. For example, a chaotic regime due to dissipative effects or chaotic mixing18 could
possibly be an alternative to inflation as a cause of homogenization and isotropization. This
alleviate the problems of initial conditions in inflation. This last point has been addressed in
19, where it was suggested that there would be sufficient time for a compact, negatively c
universe to homogenize since chaotic mixing smooths out primordial fluctuations in a pre
tionary period.

1M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory~Cambridge University Press, Cambridge, 1987!.
2J. Polchinski,String Theory~Cambridge University Press, Cambridge, 1998!.
3A. P. Billyard, A. A. Coley, and J. E. Lidsey, Phys. Rev. D59, 123505~1999!.
4A. P. Billyard, A. A. Coley, and J. E. Lidsey, J. Math. Phys.40, 5092~1999!.
5A. P. Billyard, Ph.D. thesis, 1999.
6J. Wainwright and G. F. R. Ellis,Dynamical Systems in Cosmology~Cambridge University Press, Cambridge, 1997!.
7J. E. Lidsey, D. Wands, and E. J. Copeland, hep-th/9909061.
8D. Hobill, A. Burd and A. A. Coley,Deterministic Chaos in General Relativity~Plenum, New York, 1994!.
9J. D. Barrow and M. P. Da¸browski, Phys. Rev. D57, 7204~1998!.

10V. G. LeBlanc, D. Kerr, and J. Wainwright, Class. Quantum Grav.12, 513~1995!; V. G. LeBlanc,ibid. 14, 2281~1997!;
15, 1607~1998!.



6283J. Math. Phys., Vol. 41, No. 9, September 2000 Cyclical behavior in early universe cosmologies
11V. A. Belinskii and I. M. Khalatnikov, Sov. Phys. JETP36, 591 ~1973!.
12J. D. Barrow and J. Levin, Phys. Rev. Lett.80, 656 ~1998!.
13A. A. Coley, J. Iban˜ez, and R. J. van den Hoogen, J. Math. Phys.38, 5256~1997!; A. P. Billyard, A. A. Coley, and R.

J. van den Hoogen, Phys. Rev. D58, 123501~1998!.
14H. Lu and C. N. Pope, Nucl. Phys. B465, 127 ~1996!.
15E. Witten, Nucl. Phys. B443, 85 ~1995!.
16G. A. Diamandis, B. C. Georgalas, N. E. Mavromatos, and E. Papantonopoulos, hep-th/9903045.
17K. Yamamoto, M. Sasaki, and T. Tanaka, Astrophys. J.455, 412 ~1995!.
18C. N. Lockhart, B. Misra, and I. Prigogine, Phys. Rev. D15, 921 ~1982!.
19N. J. Cornish, D. N. Spergel, and G. D. Starkman, Phys. Rev. Lett.77, 215 ~1996!.


